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Abstract

The dramatic success of Artificial Intelligence
and its applications has been accompanied by an
increasing complexity, which makes its compre-
hension for final users more difficult and dam-
ages their trustworthiness. Within this context,
the emergence of Explainable AI aims to make
intelligent systems decisions more transparent
and understandable for human users. In this pa-
per, we propose a framework for the explanation
of predictive inference in Bayesian Networks
(BN) in natural language to non-specialized
users. The model represents the embedded infor-
mation in the BN by means of (fuzzy) quantified
statements and reasons using the a fuzzy syllo-
gism. The framework provides how this can be
used for the content determination stage in Nat-
ural Language Generation explanation systems
for BNs. Through a number of realistic scenar-
ios of use examples, we show how the generated
explanations allows the user to trace the infer-
ence steps in the approximate reasoning process
in predictive BNs.

Keywords: Content Determination in natu-
ral language generation, Linguistic descriptions,
Fuzzy syllogism.

1 Introduction

The dramatic success of applications in Artificial Intelli-
gence (AI) has highlighted the importance of making the
decisions and actions of intelligent systems more under-
standable for their users. This is precisely the main goal of
the Explainable AI (XAI) paradigm, which has been catal-
ysed by workshops and conferences [2, 1]. The two main
goals of XAI are [3]:

• To develop more transparent models without affecting
their effectiveness and accuracy;

• To deliver understandable and trustworthy explana-
tions.

Furthermore, the European Union’s General Data Protec-
tion Regulation [11] actually has created what many au-
thors consider a “de-facto right to explanation”. From April
2018, whereby a user can ask for an explanation of an al-
gorithmic decision that was made about him/her. This leg-
islation is starting to fuel the explanation perspective in AI-
based systems and applications, which also will contribute
to clarify the open debate about possible biases in these sys-
tems within the general framework of Fairness, Account-
ability, Transparency and Ethics (FATE) perspective in AI
in general.

In this paper, we focus on automatic linguistic explanation
in Bayesian Networks [7] (BN), since understanding of the
underlying approximate knowledge representation and rea-
soning mechanisms (e.g. Conditional Probability Tables,
belief updating, message passing algorithms, etc.) is not
straightforward for inexperienced users. Upon BNs model,
a number of software applications have been proposed for
(mostly in a graphic way) helping users and designers to
build BN-based models for different application areas. For
instance, Promedas [17] is a probabilistic decision support
system for medical diagnosis with two goals: i) to offer
patients specific diagnosis advice and, ii) educational pur-
poses. In both cases, for a regular patient is not enough to
see the knowledge coded in a graph but he/she also needs
to understand the reasons that support the output of the sys-
tem in order to be responsive. On the other hand, several
fallacies and misunderstandings that inexperienced users
commit when using or applying BNs [6, 5] are described
in the literature; therefore, explainability is still being an
open question in this type of formalisms.

Other software tools for BNs [9] help to visualise the
knowledge represented within a BN and to perform the cal-
culations associated with the approximate reasoning pro-
cess (belief propagation and updating), but they do not pro-
vide meaningful information about the logic underlying the
model. In other words, graphical tools support the elabo-
ration of the BNs but they do not address interpretability.
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The challenge is to design a computational system that will
be able to generate an explanatory narrative of the reason-
ing process in a register of language which is adequate for
non-experienced users.

The focus of this paper is on one of the key stages of Nat-
ural Language Generation (NLG) systems, which is Con-
tent Determination [14]. Content determination in this con-
text consists in extracting the most relevant information to
be included in the final explanations in natural language
which are conveyed to the users. The content determined
in this stage is usually represented in terms of an intermedi-
ate language which is subsequently realised in plain natu-
ral language in other stages (planning, micro-planning and
linguistic realisation). Template-based NLG approaches
[16] usually merge these three subsequent stages into a sin-
gle one (linguistic realisation), since templates take care
of both planning and micro-planning simultaneously in a
straightforward manner. Our content determination ap-
proach is based on the fuzzy syllogistic theory [13], which
allows us to build a Knowledge Base (KB), made up of
binary Quantified Statements (QS), that comprises the rel-
evant information which supports the BN reasoning. Us-
ing the BN topology, we determine the key contents for a
template-based short narrative based on the semantic con-
cept of “causal chaining” in different levels of depth, where
the user can navigate from the query variable to the root
nodes in order to know how each step is involved in the
belief updating process. The obtained QSs in the content
determination stage can be integrated in a template-based
NLG system with the linguistic realisation stage, in order
to obtain an automatic system for the generation of expla-
nations of BN. However, this task is out of the aim of this
paper and will be addressed as future work.

In this paper, we describe our framework for the case of
predictive reasoning in BNs, both without fixed evidences
and with them. For the sake of simplicity, we illustrate the
behaviour of this model by means of a well-known example
in the BN literature [8].

The paper is organised as follows: Section 2 describes the
main features of the syllogistic theory that supports how
can probabilities can be worded as binary quantified state-
ments; Section 3 describes our concept of explainability
in BNs and how the text with the explanation can be gen-
erated, both in predictive inference without evidence and
with it; and, finally, Section 4, summarises our main con-
clusions and propose some tasks for future work.

2 Syllogistic Expression of Conditional
Probabilities

Probability and uncertainty are not just mathematical con-
cepts, but they are very common in natural language. Thus,
qualitative expressions such as very high probability or un-
likely or quantitative ones such as 100% or between 30%

and 35% are frequently used in everyday language and rea-
soning for dealing with situations involving uncertainty.

This idea applies to BNs as well. Schwartz [15] and Oaks-
ford and Charter [10] defined the equivalence between the
mathematical notation of probability (P (X) = Z), condi-
tional probability (P (X|Y ) = Z) and binary QS. QSs are
of the form Q ST are PT , where Q stands for a probabil-
ity Z, which can be quantitative (such as the crisp “5%”,
the fuzzy “around 20%”, etc.) or qualitative (“a few”,
“most”, etc.); ST is the the subject-term of the statement
(a single term or a Boolean combination) and stands for
the universe of reference in the case of a priori probabil-
ities (P (X) = Z) or Y in the case of conditional prob-
abilities (P (X|Y ) = Z); and, PT is the predicate-term
(which can also be a single one or a Boolean combina-
tion) and stands for X . For instance, the a priori proba-
bility P (Cancer) = 1.16% can be expressed as “1.16%
of people have cancer” whilst the Conditional Probability
P (Cancer | Smoker) = 5% can be expressed as “5% of
smokers have cancer” or “5% of people who are smokers
have cancer”.

Quantified statements employ a set-based semantics in-
stead of a Bayesian one. Therefore, each statement is de-
noting a particular set or subset of the universe and the
quantifier heading the sentence its cardinality. From the
point of view of human understanding of reasoning, its in-
terpretation is not a trivial step but it affects the persuasive-
ness of the argument for the user [4]; i.e., how the informa-
tion is presented has cognitive effects on the addressee.

Based on these assumptions, Pereira-Fariña et al. [13] en-
hanced the theory of syllogistic logic to handle arguments
with more than two fuzzy premises and three terms, which
opens the possibility of using fuzzy syllogistics for devel-
oping a linguistic version of BNs [12]. The general in-
ference pattern for the generalised fuzzy syllogism is de-
scribed as follows:

PR1 : Q1 L1,1 are L1,2

PR2 : Q2 L2,1 are L2,2

. . .
PRN : QN LN,1 are LN,2

C : QC LC,1 are LC,2

(1)

where PRn, n = 1,. . . , N denote the premises and C
the conclusion. In any premise, PRn, Qn denotes are
its (fuzzy) quantifier, Ln,j , j = 1, 2 denote an arbi-
trary Boolean combination among the terms considered
in the syllogism (subject-term ST for j=1, predicate-term
PT for j=2). Similarly, for the Conclusion C, QC stands
for its quantifier (which is the value to be calculated) and
LC,1 and LC,2 stand respectively for its subject-term and
predicate-term.

This schema has the same structure of any propositional
logic argument, where the premises convey the available
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information and, the conclusion, the variable of interest
(query). A critical step for defining the equivalent syllo-
gism to a BN is how the information conveyed in a BN has
to be expressed. To the best of our knowledge, this task has
not been addressed yet in the literature.

In Table 1 we define the five steps procedure to be followed
for converting a BN into an equivalent KB made up of bi-
nary QSs. Once the universe of reference U is set (step 1),
we distinguish two well-differentiated parts in a BN that
must be independently analysed: root nodes (steps 2 and 3)
and non-root nodes (step 4).

Root-nodes do not have parents and, consequently, the cor-
responding variables are not conditioned by others. The
values of these variables are associated with a priori prob-
abilities. As described in Table 1-step 2, the ST of the QSs
is U and their PT are the pairs variable-value. The values of
the crisp quantifiers are directly extracted from the a priori
probabilities. The independence relationship between the
variables of the root-nodes is implicit in the BN, but it has
to be made explicit in order to obtain a full representation
of it, and a consistent explanation for the reasoning pro-
cess. This is addressed in Table 1-step 3. The quantifier is
calculated here using the product rule because of the inde-
pendence condition.

Table 1-step 4 deals with non-root nodes. Here, the ST
of the QS are the variables in the parent nodes of the PT.
The values of the quantifiers are now taken from the Con-
ditional Probability Tables (CPT) in the BN.

The last point of the procedure addresses the wording of the
QS in the KB; i.e., the intermediate language of the content
determination step. Each one of the QS follows the form Q
ST are PT, where Q stands for the corresponding quantifier
and ST and PT stand for Subject-term and Predicate-term
correspondingly.

For illustrative purposes, we consider in Fig. 1 a handbook
example of BN about the medical diagnosis of cancer [8,
p. 29-36]. Table 2 contains the equivalent KB made up
of binary QSs obtained as a result of applying the proce-
dure described in Table 1. We assume the fuzzy protoform
“Q X is A and Y is B and . . . ” which is represented
in Table 2) with the following intermediate language n-
tuple notation: (Q,X is A, Y is B, . . . ). Three different
blocks or types of QSs are generated, which correspond to:
i) variables related to root-nodes pollution (QS1-QS2) and
smoker (QS3-QS4), ii) independence condition between
these variables (QS5-QS8) and iii) non-root nodes vari-
ables cancer (QS9-QS16), XRay (QS17-QS20) and dysp-
noea (QS21-QS24). The KB in Table 2 describes in an
intermediate language all the relevant information that is
explicitly or implicitly included in the BN of the example
of Fig. 1. Chaining among QSs provide explanation paths
for the approximate reasoning in the BN, as we show in the

Pollution Smoker

Cancer

XRay Dyspnoea
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0.30
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0.70
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0.95

0.98

0.97

0.999

Figure 1: A BN for the lung cancer problem described in [8].

example scenarios in Section 3.2.1

3 Explainability of Bayesian Predictive
Inference

Forward or predictive reasoning can be executed with or
without evidence. Without evidence, it is the immediate
belief propagation through the network once the values of
the CPTs are defined, and, with evidence, a particular vari-
able in one of the nodes takes a concrete value and this
triggers a new belief updating process [8]. From the point
of view XAI and a final user, inference with evidence is
most interesting because it allows the user to define spe-
cific conditions and see the updated probability explicable
to them.

In this section, we will describe the general procedure
for the generation of the linguistic explanation and then
illustrate it using the BN in Fig. 1. This network is
composed of five nodes, with two root nodes, all con-
taining bi-valued variables (Pollution = {Low,High},
Smoker = {True, False}, Cancer = {True, False},
XRay = {Positive,Negative} and Dyspnoea =
{True, False}).

3.1 General Procedure

Predictive inference in BNs can involve evidence or not. In
the former case, and without loss of generality, let us con-
sider a node N in a BN, associated to variable X and let x
be one of its values. The procedure, in this case, will obtain
the QSs associated with the BN which explain the inferred

1Furthermore, performing syllogistic reasoning in the KB in
Table 2, is equivalent to predictive reasoning in BNs. For instance,
one of the QS obtained as a conclusion is “1.163% of people have
cancer.”
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Let U be the universe of reference, Xi the i-th probabilistic variable (associated to the corresponding node of
the BN), V ALXi

= {xi,ni
;ni = 1, . . . , Ni} the set of its linguistic values. Each linguistic value is denoted

xi,ni and the number of these linguistic values is Ni.

1. BUILDING THE STATEMENTS CORRESPONDING TO ROOT NODES (A PRIORI PROBABILITIES).
For each variable Xi associated to a root node and ∀xi,ni

∈ V ALXi
, a binary quantified statement is

added to the KB, with

• Quantifier= P (Xi = xi,ni
)

• Subject-term = noun corresponding to the U

• Predicate-term = noun phrase corresponding to the variable and the value that it takes; i.e.,
“Xi is xi,ni”

Therefore, the total number of statements to be generated in this step is
IRN∑
i=1

Ni, being IRN the number of

root nodes.

2. BUILDING THE STATEMENTS CORRESPONDING TO ROOT NODES (INDEPENDENCE CONDITIONS).
For each different combination of all the values of the I variables Xi associated to root nodes, a binary
quantified statement is added to the KB, with

• Quantifier=
I∏

i=1

P (Xi = xi,ni
)

• Subject-term = noun corresponding to the U

• Predicate-term= conjunction using and with all the corresponding values;
i.e.,“X1 is x1,n1

and . . . and XI is xI,nI
”

Therefore, the total number of statements to be added in this step is
IRN∏
i=1

Ni, being IRN the number of root

nodes.

3. BUILDING THE STATEMENTS CORRESPONDING TO NON-ROOT NODES.
Let Xi be a variable associated to an intermediate node and PXi

= {X1, . . . , XK} the set of variables
associated to its K parents.The corresponding values for each Xk, k = 1, . . . ,K is denoted as V ALXk

=
{xk,nk

;nk = 1, . . . , Nk}. For all ni ∈ {1, ..., Ni}, for each different combination of the values of the
variables Xk associated to the parent nodes, a binary quantified statement is added to the KB, with

• Quantifier= P (Xi = xi,ni
| X1 = x1,n1

, . . . , XK = xK,nK
)

• Subject-term= the variables corresponding to the parent nodes: i.e.,
“X1 is x1,n1

and . . . and XK is xK,nK
”

• Predicate-term= the variables corresponding to the child node; i.e., “Xi is xi,ni”

These QS make explicit the independence conditions between variables associated to root nodes. There-

fore, the total number of statements to be added in this step is
K∑

k=1

Nk, being K the number of parent

nodes.

4. WORDING OF THE QS IN THE KB.
Each of the binary quantified statements added in the previous steps are worded in the usual form:

Q ST are PT,

where Q, ST and PT are, respectively, the corresponding previously defined Quantifier, Subject-term and
Predicate-term

Table 1: Procedure for the Description of a Bayesian Network in terms of Binary Quantified Statements (Content determination stage).
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Procedure of Table 1 Statement Content determination (Q X is A and Y is B and . . . )

Step 1: Statements for root-nodes

QS1 (90%, people, Pollution is Low)
QS2 (10%, people, Pollution is High)
QS3 (30%, people, Smoker is True)
QS4 (70%, people, Smoker is False)

Step 2: Statements for
independence of root-nodes

QS5 (27%, people, Pollution is Low, Smoker is True)
QS6 (63%, people, Pollution is Low, Smoker is False)
QS7 (3%, people, Pollution is High, Smoker is True)
QS8 (7%, people, Pollution is High, Smoker is False)

Step 3: Statements corresponding
to non-root nodes

QS9 (5%, people, Pollution is High, Smoker is True, Cancer is True)
QS10 (95%, people, Pollution is High, Smoker is True, Cancer is False)
QS11 (2%, people, Pollution is High, Smoker is False, Cancer is True)
QS12 (98%, people, Pollution is High, Smoker is False, Cancer is False)
QS13 (3%, people, Pollution is Low, Smoker is True, Cancer is True)
QS14 (97%, people, Pollution is Low, Smoker is True, Cancer is False)
QS15 (0.1%, people, Pollution is Low, Smoker is False, Cancer is True)
QS16 (99.9%, people, Pollution is Low, Smoker is False, Cancer is False)
QS17 (90%, people, Cancer is True,XRay is Positive)
QS18 (10%, people, Cancer is True,XRay is Negative)
QS19 (20%, people, Cancer is False,XRay is Positive)
QS20 (80%, people, Cancer is False,XRay is Negative)
QS21 (65%, people, Cancer is True,Dyspnoea is Positive)
QS22 (35%, people, Cancer is True,Dyspnoea is Negative)
QS23 (30%, people, Cancer is False,Dyspnoea is Positive)
QS24 (70%, people, Cancer is False,Dyspnoea is Negative)

Table 2: Intermediate language expression with crisp quantifiers obtained applying the procedure described in Table 1 to the example of
Figure 1

conclusion for the query pair variable-value P (X = x),
which corresponds to QS: Q Us are x, being U the universe
of X .

In Algorithm 1 we describe the general procedure for the
extraction of the relevant QS (SKB) in the KB for the con-
tent determination of the linguistic explanation of the in-
ferred conclusion (query pair variable-value P (X = x)).
In the first place, the BN is converted into a KB made up
of QS, following the procedure in Table 1. Secondly, the
iterative search of the QS is performed. In the first place,
all the QS involving value x in their PT are selected (to
this aim, the values list is initialised with x). After that,
the corresponding ST are considered as the new values to
be iteratively searched for in the KB and therefore added
to the value list. Value x is no longer considered. This is
repeated until the values list is empty. At this point, the
procedure ends and all the selected QS are returned. These
are the QSs which actually correspond to the variables in
the ancestors of node N in the BN.

3.2 Three Scenarios of the Explanation Algorithm
Applied to Different Cases of Predictive
Reasoning

Let us consider a computational system that implements
the BN of Fig. 1 and a user that interacts with it by means
of a natural language. We define three possible scenarios
for the interaction between the user and the system that in-

clude predictive reasoning with and without evidence. As
universe of reference, let us suppose the population of a
city, which is labelled as “people”.

In the first scenario, the user is just interested in knowing
the probability of having cancer, without any other addi-
tional information:

User: “What is the chance that I will have can-
cer?”
System: “Without any other additional informa-
tion about where do you live or whether or not
you are a smoker, you have 1.163% of chance of
having cancer.”
User: “Why?”

This question triggers the explainability module. Ac-
cording to Algorithm 1, KB is initialised following the
procedure in Table 2 and LIST with “Cancer is True”.
The y value is “Cancer is True” (query variable and
value) and all those statements in KB that have “Can-
cer is True” in the PT are extracted, obtaining SKB =
{QS9, QS11, QS13, QS15} after the first iteration of the
external loop. In the second and third iterations, the
values of y are all the values of variables Pollution and
Smoker; therefore, all those statements with these variables
in the ST must be added to SKB, obtaining as final result
SKB={QS1, Q2S, Q3S, QS4, QS5, QS6, QS7, QS8, QS9,
QS11, QS13, QS15}.
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Data: X (query variable), x (value of X)
Result: SKB, the selected QS
KB = Knowledge Base of QS obtained using the
procedure in Table 1;

N = | KB |, the number of QS in KB;
SKB = ∅;
LIST = { ”X = x”};
while LIST <> ∅ do /* still values to look
for in the PTs of the KB */

SELECT y ∈ LIST /* any of the remaining
PTs */;

for k=1 to N do /* looking for y in the
PT of the KB */

if y is a PT of QSk then
SKB = SKB

⋃
{QSk} /* QSk added

to the KB */;
LIST = LIST

⋃
Y , being Y all the values in

the ST of QSk /* All the values in
the ST to be considered */;

end
end
LIST = LIST \y;

end
Algorithm 1: Algorithm in pseudo-code for the selection
of the relevant set of QS for the explanation of a predictive
inference without evidence (query variable X = x).

Once the content determination step is completed (i.e.,
SKB), a template-based linguistic realisation, following
the NLG pipeline, is generated for answering the question
“Why?”. In order to make clear the causal relation support-
ing the different QS involved in the explanation, we use the
linguistic causality marker “because”:

There is a chance of 1.163% for
people having cancer because cancer
is related to pollution and smoking.
Since people can be in high or low
polluted areas or can be smokers
or not, this chance arises from
considering all the combinations:

• 0.15% is the chance for people
to have cancer when they are
in high polluted areas and are
smokers. This is because they
are 3% of total people and there
is a 5% chance for them to have
cancer.

• 0.14% is the chance for people
to have cancer when they are in
high polluted areas and are not
smokers. This is because they
are 7% of total people and there
is a 2% of chance for them to
have cancer.

• 0.81% is the chance for people

to have cancer when they are
in low polluted areas and are
smokers. This is because they
are 27% of total people and
there is a 3% of chance for them
to have cancer.

• 0.063% is the chance for people
to have cancer when they are
in low polluted areas and are
not smokers. This is because
they are 63% of total people and
there is a 0.1% of chance for
them to have cancer.

In a second scenario, we address reasoning with evidence
when it is in the parent node of the query variable. Thus,
without loss of generality, let us consider a node N in a
BN, associated to variable X and let x be one of its values.
Let Z be the variable in one of the ancestors of N and z
one of its values, for which there is some fixed evidence
P (Z = z) = 1. The procedure in this case will obtain
the QSs associated to the BN which explain the inferred
conclusion P (X = x | Z = z), which corresponds to QS:
Q zs are x.

Thus, the user says to the system that s/he is a smoker (the
evidence Smoker is True), obtaining the answer “there is
a chance of 3.2% for smokers to have cancer”. This ev-
idence, in addition to be in the parent node of the query
variable, it is also in a root node of the network and this
simplifies the explanation. Both the QSs of KB about in-
dependence and all QSs involving values different of z are
also discarded, since the corresponding quantifiers become
null. Thus, following the Algorithm 1, the y value is again
Cancer is True but the ST is Smoker is True, therefore,
we have to select those QSs in the KB satisfying this con-
straint; obtaining in the first iteration of the external loop
SKB={QS9, QS13}. In the next iteration, since the inde-
pendence QSs are not required, we just have to add the QS
corresponding to the other term in the ST of QS9 and QS13;
i.e., Pollution is High and Pollution is Low. As a re-
sult, SKB={QS9, QS13, QS1, QS2}.

The generated linguistic summary is the following one:

There is a chance of 3.2% for
smokers to have cancer because once
you are a smoker, cancer is related
to pollution. Since people can be
in high or low polluted areas, this
chance arises from considering all
the combinations:

• 2.7% is the chance for smokers
to have cancer when they are
in low polluted areas. This is
because they are 90% of total
people and there is a 3% chance
for them to have cancer;
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• 0.5% is the chance for smokers
to have cancer when they are in
high polluted areas. This is
because they are 10% of total
people and there is a 5% chance
for them to have cancer.

In the third scenario, the only difference with respect to
the previous one is that Z is an ancestor which is not a
parent of X . This case can be solved applying the same
procedure. Once again, QSs related to the separation or
involving values different of z will be discarded.

Thus, the user asks the system the chances of having dys-
pnoea given he is a smoker. The system replies “there is a
chance of 31.12% for smokers to have dyspnoea, because
dyspnoea is related to cancer”. For building the explana-
tion, according to Algorithm 1, the y value in this case is
“Dyspnoea is Positive” and the first set of statements are
those where y is the PT; i.e., SKB={QS21, QS23}. In the
next iteration of the external loop, we add all the QS where
the STs of the QS of SKB are PTs taking into the evidence;
i.e., “Cancer is True” and “Cancer is False” given “Smoker
is True”; i.e., SKB={QS14, QS13, QS10, QS09}. Finally,
SKB={QS1, QS2} are selected.

The resulting linguistic explanation is as follows:

There is a chance of 31.12%
for smokers to have dyspnoea,
because dyspnoea is related to
cancer. Since smokers can be either
have cancer or not, this chance
arises from considering all the
combinations:

• 2.08% is the chance for smokers
to have dyspnoea when they have
cancer because they are 3.2% of
total people and 65% of people
with cancer have dyspnoea;

• 29.040% is the chance for
smokers to have dyspnoea when
they do not have cancer because
they are 96.8% of total people
and 30% of people without cancer
have dyspnoea.

The remaining part of the explanation can be generated in
the same way of scenario 2.

4 Conclusions

We have presented a novel method for the explanation of
predictive Bayesian Networks (BNs) using a linguistic ap-
proach which makes use of the equivalence of BNs and
binary Quantified Statements. The method focuses on the
content determination stage of Natural Language Genera-
tion systems, by generating Quantified Statements (of the

form Q ST are PT) which facilitates the generation of ex-
planations of the reasoning process in BNs in a template-
based NLG system. Particularly, these Quantified State-
ments make explicit some issues that are implicit in the
BNs approximate reasoning mechanism, such are the in-
dependence condition for root node variables as well as D-
separation when evidence for input variables is fixed. Since
we just focus on the relevant information for the variable in
the query, we do not need to explain how all the values of
the BN are updated, which simplifies its interpretability for
non-expert users.

For future work, we will address the extension of this
framework for dealing with other types of reasoning in
BNs, such as inter-causal or diagnostic ones. In the lin-
guistic module, we will address how the use of fuzzy quan-
tifiers can improve the overall quality of the explanations
for the users. Finally, we will integrate this framework in
a template-based NLG system for automatic generation of
explanations in natural language for BN knowledge repre-
sentation, including an evaluation phase in order to quan-
tify how useful are these explanations for the user and how
they can be improved.

We have laid the groundwork for building explanations for
BN using a NLG approach, which makes them legible for
non-experienced users. We adopted a new viewpoint about
the pair node-variable, with the use of binary Quantified
Statements, and the reasoning structure, with the chaining
between these statements.

Acknowledgement

This research was funded by the Spanish Ministry for Sci-
ence, Innovation and Universities (grant TIN2017-84796-
C2-1-R) and the Galician Ministry of Education, Univer-
sity and Professional Training (grants ED431C 2018/29
and ”accreditation 2016-2019, ED431G/08”). All grants
were co-funded by the European Regional Development
Fund (ERDF/FEDER program). The first author was also
funded by the “Consellerı́a de Cultura, Educación e Or-
denación Universitaria” under the Postdoctoral Fellowship
accreditation ED481B 2016/048-0.

References

[1] D. V. Aha, T. Darrell, P. Doherty, D. Magazzeni,
IJCAI-18 Workshop on Explainable AI (XAI),
http://home.earthlink.net/˜dwaha/
research/meetings/faim18-xai, last
accessed May 15, 2019. (2018).

[2] D. V. Aha, T. Darrell, M. Pazzani, D. Reid, C. Sam-
mut, P. Stone, IJCAI-17 Workshop on Explainable AI
(XAI), http://www.intelligentrobots.
org/files/IJCAI2017/IJCAI-17_XAI_
WS_Proceedings.pdf, last accessed May 15,
2019. (2017).

790



[3] DARPA, Explainable Artificial Intelligence (XAI),
https://www.darpa.mil/program/
explainable-artificial-intelligence,
last accessed May 15, 2019. (2016).

[4] P. Johnson-Laird, B. G. Bara, Syllogistic inference,
Cognition 16 (1984) 1 – 61.

[5] D. Kahneman, Thinking, Fast and Slow, Farrar, Straus
and Giroux, 2011.

[6] K. Korb, Bayesian informal logic and fallacy, Infor-
mal Logic 23 (2) (2004) 41–70.

[7] K. Korb, R. McConachy, I. Zukerman, A cognitive
model of argumentation, in: Proceedings of the Nine-
teenth Annual Conference of the Cognitive Science
Society, 1997, pp. 400–405.

[8] K. Korb, A. Nicholson, Bayesian Artificial Intelli-
gence, Chapman & Hall/CRC, 2004.

[9] Norsys, Netica application, http://www.
norsys.com/netica.html, last accessed
May 15, 2019. (2017).

[10] M. Oaksford, N. Chater, Bayesian Rationality. The
probabilistic approach to human reasoning, Oxford
University Press, Oxford, 2007.

[11] Parliament and Council of the European Union, Gen-
eral data protection regulation (GDPR), http://
data.europa.eu/eli/reg/2016/679/oj,
last accessed May 15, 2019. (2016).

[12] M. Pereira-Fariña, A. Bugarı́n, Approximate syllo-
gism as argumentative expression for knowledge rep-
resentation and reasoning with generalized Bayes’
theorem, in: D. Mohammed, M. Lewinski (Eds.),
Argumentation and Reasoned Action: Proceedings
of the First European Conference on Argumentation,
Studies in Logic and Argumentation. College Publi-
cations, 2016, pp. 817–830.

[13] M. Pereira-Fariña, J. C. Vidal, F. Dı́az-Hermida,
A. Bugarı́n, A fuzzy syllogistic reasoning schema for
generalized quantifiers, Fuzzy Sets and Systems 234
(2014) 79 – 96.

[14] E. Reiter, R. Dale, Building Natural Language Gen-
eration Systems, Cambridge University Press, 2000.

[15] D. G. Schwartz, Dynamic reasoning with qualified
syllogisms, Artificial Intelligence 93 (1997) 103–167.

[16] K. van Deemter, E. Krahmer, M. Theune, Squibs
and discussions: Real versus template-based natural
language generation: A false opposition?, Computa-
tional Linguistics 31, 1 (2005) 15 – 23.

[17] W. Wiegerinck, M. Nijman, W. ter Burg, E. ter
Braak, Y. O, J. Neijt, H. Kappen, Inference and ad-
visory system for medical diagnosis second report
STW-NGN55. 3614, http://www.snn.ru.nl/
v2/serve.php?doc=eind1.pdf (1999).

791




